martes, 29 de diciembre de 2009

Atomistic analysis of B clustering and mobility degradation in highly B-doped junctions


In this paper we discuss from an atomistic point of view some of the issues involved in the modeling of electrical characteristics evolution in silicon devices as a result of ion implantation and annealing processes in silicon. In particular, evolution of electrically active dose, sheet resistance and hole mobility has been investigated for high B concentration profiles in pre-amorphized Si. For this purpose, Hall measurements combined with atomistic kinetic Monte Carlo atomistic simulations have been performed. An apparent anomalous behavior has been observed for the evolution of the active dose and the sheet resistance, in contrast to opposite trend evolutions reported previously. Our results indicate that this anomalous behavior is due to large variations in hole mobility with active dopant concentration, much larger than that associated to the classical dependence of hole mobility with carrier concentration. Simulations suggest that hole mobility is significantly degraded by the presence of a large concentration of boron-interstitial clusters, indicating the existence of an additional scattering mechanism. Copyright © 2009 John Wiley & Sons, Ltd.



Published by
Published by xFruits
Original source : http://dx.doi.org/10.1002%2Fjnm.737...

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.