We investigate the ability of the function sin[n Delta t sin (n Delta t1)],
where n is an integer and growing number, to produce unpredictable sequences of
numbers. Classical mathematical tools for distinguishing periodic from chaotic
or random behaviour, such as sensitivity to the initial conditions, Fourier
analysis, and autocorrelation are used. Moreover, the function acos{sin[n Delta
t sin (n Delta t1)]}/pigreek is introduced to have an uniform density of
numbers in the interval [0,1], so it can be submitted to a battery of widely
used tests for random number generators. All these tools show that a proper
choice of Delta t and Delta t1, can produce a sequence of numbers behaving as
unpredictable dynamics.
jueves, 17 de marzo de 2011
sin[n Delta t sin (n Delta t1)] as a source of unpredictable dynamics. (arXiv:1103.3160v1 [nlin.CD])
sin[n Delta t sin (n Delta t1)] as a source of unpredictable dynamics. (arXiv:1103.3160v1 [nlin.CD]): "
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.