jueves, 17 de marzo de 2011

Quantum algorithm for the Boolean hidden shift problem. (arXiv:1103.3017v1 [quant-ph])

Quantum algorithm for the Boolean hidden shift problem. (arXiv:1103.3017v1 [quant-ph]): "

The hidden shift problem is a natural place to look for new separations
between classical and quantum models of computation. One advantage of this
problem is its flexibility, since it can be defined for a whole range of
functions and a whole range of underlying groups. In a way, this distinguishes
it from the hidden subgroup problem where more stringent requirements about the
existence of a periodic subgroup have to be made. And yet, the hidden shift
problem proves to be rich enough to capture interesting features of problems of
algebraic, geometric, and combinatorial flavor. We present a quantum algorithm
to identify the hidden shift for any Boolean function. Using Fourier analysis
for Boolean functions we relate the time and query complexity of the algorithm
to an intrinsic property of the function, namely its minimum influence. We show
that for randomly chosen functions the time complexity of the algorithm is
polynomial. Based on this we show an average case exponential separation
between classical and quantum time complexity. A perhaps interesting aspect of
this work is that, while the extremal case of the Boolean hidden shift problem
over so-called bent functions can be reduced to a hidden subgroup problem over
an abelian group, the more general case studied here does not seem to allow
such a reduction.

"

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.