viernes, 11 de diciembre de 2009

Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization. (arXiv:0912.1845v1 [math.OC])


Multiplicative noise (also known as speckle noise) models are central to the
study of coherent imaging systems, such as synthetic aperture radar and sonar,
and ultrasound and laser imaging. These models introduce two additional layers
of difficulties with respect to the standard Gaussian additive noise scenario:
(1) the noise is multiplied by (rather than added to) the original image; (2)
the noise is not Gaussian, with Rayleigh and Gamma being commonly used
densities. These two features of multiplicative noise models preclude the
direct application of most state-of-the-art algorithms, which are designed for
solving unconstrained optimization problems where the objective has two terms:
a quadratic data term (log-likelihood), reflecting the additive and Gaussian
nature of the noise, plus a convex (possibly nonsmooth) regularizer (e.g., a
total variation or wavelet-based regularizer/prior). In this paper, we address
these difficulties by: (1) converting the multiplicative model into an additive
one by taking logarithms, as proposed by some other authors; (2) using variable
splitting to obtain an equivalent constrained problem; and (3) dealing with
this optimization problem using the augmented Lagrangian framework. A set of
experiments shows that the proposed method, which we name MIDAL (multiplicative
image denoising by augmented Lagrangian), yields state-of-the-art results both
in terms of speed and denoising performance.





Published by
Published by xFruits
Original source : http://arxiv.org/abs/0912.1845...