Much research has been devoted to the problem of restoring Poissonian images,
namely for medical and astronomical applications. However, the restoration of
these images using state-of-the-art regularizers (such as those based on
multiscale representations or total variation) is still an active research
area, since the associated optimization problems are quite challenging. In this
paper, we propose an approach to deconvolving Poissonian images, which is based
on an alternating direction optimization method. The standard regularization
(or maximum a posteriori) restoration criterion, which combines the Poisson
log-likelihood with a (non-smooth) convex regularizer (log-prior), leads to
hard optimization problems: the log-likelihood is non-quadratic and
non-separable, the regularizer is non-smooth, and there is a non-negativity
constraint. Using standard convex analysis tools, we present sufficient
conditions for existence and uniqueness of solutions of these optimization
problems, for several types of regularizers: total-variation, frame-based
analysis, and frame-based synthesis. We attack these problems with an instance
of the alternating direction method of multipliers (ADMM), which belongs to the
family of augmented Lagrangian algorithms. We study sufficient conditions for
convergence and show that these are satisfied, either under total-variation or
frame-based (analysis and synthesis) regularization. The resulting algorithms
are shown to outperform alternative state-of-the-art methods, both in terms of
speed and restoration accuracy.
viernes, 15 de enero de 2010
Restoration of Poissonian Images Using Alternating Direction Optimization. (arXiv:1001.2244v2 [math.OC] UPDATED)
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.