martes, 26 de enero de 2010

Optimal tuning of the Hybrid Monte-Carlo Algorithm. (arXiv:1001.4460v1 [math.PR])


We investigate the properties of the Hybrid Monte-Carlo algorithm (HMC) in
high dimensions. HMC develops a Markov chain reversible w.r.t. a given target
distribution $Pi$ by using separable Hamiltonian dynamics with potential
$-logPi$. The additional momentum variables are chosen at random from the
Boltzmann distribution and the continuous-time Hamiltonian dynamics are then
discretised using the leapfrog scheme. The induced bias is removed via a
Metropolis-Hastings accept/reject rule. In the simplified scenario of
independent, identically distributed components, we prove that, to obtain an
$mathcal{O}(1)$ acceptance probability as the dimension $d$ of the state space
tends to $infty$, the leapfrog step-size $h$ should be scaled as $h= l imes
d^{-1/4}$. Therefore, in high dimensions, HMC requires $mathcal{O}(d^{1/4})$
steps to traverse the state space. We also identify analytically the
asymptotically optimal acceptance probability, which turns out to be 0.651 (to
three decimal places). This is the choice which optimally balances the cost of
generating a proposal, which {em decreases} as $l$ increases, against the cost
related to the average number of proposals required to obtain acceptance, which
{em increases} as $l$ increases.





Published by
Published by xFruits
Original source : http://arxiv.org/abs/1001.4460...

No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.