Abstract We present a Kantorovich-type semilocal convergence analysis of the Newton–Josephy method for solving a certain class of variational
inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions,
we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291–1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer
error bounds on the distances involved, and an at least as precise information on the location of the solution.
inequalities. By using a combination of Lipschitz and center-Lipschitz conditions, and our new idea of recurrent functions,
we provide an analysis with the following advantages over the earlier works (Wang 2009, Wang and Shen, Appl Math Mech 25:1291–1297, 2004) (under the same or less computational cost): weaker sufficient convergence conditions, larger convergence domain, finer
error bounds on the distances involved, and an at least as precise information on the location of the solution.
- Content Type Journal Article
- Category Original Paper
- DOI 10.1007/s11075-010-9364-2
- Authors
- Ioannis K. Argyros, Cameron University Department of Mathematics Sciences Lawton OK 73505 USA
- Saïd Hilout, Poitiers University Laboratoire de Mathématiques et Applications Bd. Pierre et Marie Curie, Téléport 2 B.P. 30179 86962 Futuroscope Chasseneuil Cedex France
- Journal Numerical Algorithms
- Online ISSN 1572-9265
- Print ISSN 1017-1398
- Journal Volume Volume -1
- Journal Issue Volume -1, Online First / January, 2010
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.