We consider numerical approximations of the Monge-Amp\`ere equation det $D^2
u=f, f>0$ with Dirichlet boundary conditions on a convex bounded domain
$\Omega$ in $\mathbb{R}^n, n=2,3$. We make a comparative study of three
existing methods suitable for finite element computations. We construct
conforming approximations in the framework of the spline element method where
constraints and interelement continuities are enforced using Lagrange
multipliers.
miércoles, 8 de diciembre de 2010
Spline element method for the Monge-Ampere equation. (arXiv:1012.1775v1 [math.NA])
Spline element method for the Monge-Ampere equation. (arXiv:1012.1775v1 [math.NA]): "
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.