Click here for the most recent polymath3 research thread.
Xavier Dahan and Jean-Pierre Tillich’s Octanion-based Ramanujan Graphs with High Girth.
Michael Atiyah’s lecture at IAS physics last Friday was entertaining, educational and quite provocative.
The talk started with the following thesis: There are four fundamental forces of nature and there are four division rings over the reals. The real numbers, complex numbers, Quaternions and the Octanions. Atiyah expects that the Octanions will play a major role in physics and will allow a theory which accounts for gravitation. He described some specific steps in this direction and related ideas and connections. At the end of the talk, Atiyah’s thesis looked more plausible than in the beginning. His concluding line was: “you can regard what I say as nonsense, or you can claim that you know it already, but you cannot make these two claims together.” In any case, it looks that the people in the audience were rather impressed by and sympathetic to the Octanionic ideas of this wise energetic scientific tycoon.
The same day I received an email from Nati Linial. The subject was: “a good topic for your blog” and the email contained just a single link.
http://arxiv.org/PS_cache/arxiv/pdf/1011/1011.2642v1.pdf
Nati is my older academic brother and often I regard our relations as similar to typical relations between older and younger (biological) brothers. When he tells me what to do I often rebel, but usually at the end I do as he says and most of the times he is right.
So I waited a couple of hours before looking at the link. Indeed, 1011.2642v1.pdf is a great paper. It uses Octanions in place of Quaternions for the construction of Ramanujan graphs and describes a wonderful breakthrough in creating small graphs with large girth.
"
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.