Abstract
We describe a new, spectrally accurate method for solving matrix-valued Riemann–Hilbert problems numerically. The effectiveness
of this approach is demonstrated by computing solutions to the homogeneous Painlevé II equation. This can be used to relate
initial conditions with asymptotic behavior.
of this approach is demonstrated by computing solutions to the homogeneous Painlevé II equation. This can be used to relate
initial conditions with asymptotic behavior.
- Content Type Journal Article
- DOI 10.1007/s10208-010-9079-8
- Authors
- Sheehan Olver, Oxford University Mathematical Institute, 24–29 St Giles’, Oxford, UK
- Journal Foundations of Computational Mathematics
- Online ISSN 1615-3383
- Print ISSN 1615-3375
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.