Common efficient schemes for the incompressible Navier-Stokes equations, such
as projection or fractional step methods, have limited temporal accuracy as a
result of matrix splitting errors, or introduce errors near the domain
boundaries (which destroy uniform convergence to the solution). In this paper
we recast the incompressible (constant density) Navier-Stokes equations (with
the velocity prescribed at the boundary) as an equivalent system, for the
primary variables velocity and pressure. We do this in the usual way away from
the boundaries, by replacing the incompressibility condition on the velocity by
a Poisson equation for the pressure. The key difference from the usual
approaches occurs at the boundaries, where we use boundary conditions that
unequivocally allow the pressure to be recovered from knowledge of the velocity
at any fixed time. This avoids the common difficulty of an, apparently,
over-determined Poisson problem. Since in this alternative formulation the
pressure can be accurately and efficiently recovered from the velocity, the
recast equations are ideal for numerical marching methods. The new system can
be discretized using a variety of methods, in principle to any desired order of
accuracy. In this work we illustrate the approach with a 2-D second order
finite difference scheme on a Cartesian grid, and devise an algorithm to solve
the equations on domains with curved (non-conforming) boundaries, including a
case with a non-trivial topology (a circular obstruction inside the domain).
This algorithm achieves second order accuracy (in L-infinity), for both the
velocity and the pressure. The scheme has a natural extension to 3-D.
martes, 16 de noviembre de 2010
An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary. (arXiv:1011.3589v1 [math.NA])
An efficient method for the incompressible Navier-Stokes equations on irregular domains with no-slip boundary conditions, high order up to the boundary. (arXiv:1011.3589v1 [math.NA]): "
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.