The distributed relaxation method for the Stokes problem has been advertised as an adequate change of variables that leads to a lower triangular system with Laplace operators on the main diagonal for which multigrid methods are very efficient. We show that under high regularity of the Laplacian, the transformed system admits almost block-lower triangular form. We analyze the distributed relaxation method and compare it with other iterative methods for solving the Stokes system. We also present numerical experiments illustrating the effectiveness of the transformation which is well established for certain finite difference discretizations of Stokes problems. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010
domingo, 24 de enero de 2010
A new approach for solving Stokes systems arising from a distributive relaxation method
The distributed relaxation method for the Stokes problem has been advertised as an adequate change of variables that leads to a lower triangular system with Laplace operators on the main diagonal for which multigrid methods are very efficient. We show that under high regularity of the Laplacian, the transformed system admits almost block-lower triangular form. We analyze the distributed relaxation method and compare it with other iterative methods for solving the Stokes system. We also present numerical experiments illustrating the effectiveness of the transformation which is well established for certain finite difference discretizations of Stokes problems. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.