We propose a new fast algorithm for solving one of the standard approaches to
ill-posed linear inverse problems (IPLIP), where a (possibly non-smooth)
regularizer is minimized under the constraint that the solution explains the
observations sufficiently well. Although the regularizer and constraint are
usually convex, several particular features of these problems (huge
dimensionality, non-smoothness) preclude the use of off-the-shelf optimization
tools and have stimulated a considerable amount of research. In this paper, we
propose a new efficient algorithm to handle one class of constrained problems
(often known as basis pursuit denoising) tailored to image recovery
applications. The proposed algorithm, which belongs to the family of augmented
Lagrangian methods, can be used to deal with a variety of imaging IPLIP,
including deconvolution and reconstruction from compressive observations (such
as MRI), using either total-variation or wavelet-based (or, more generally,
frame-based) regularization. The proposed algorithm is an instance of the
so-called "alternating direction method of multipliers", for which convergence
sufficient conditions are known; we show that these conditions are satisfied by
the proposed algorithm. Experiments on a set of image restoration and
reconstruction benchmark problems show that the proposed algorithm is a strong
contender for the state-of-the-art.
jueves, 17 de diciembre de 2009
An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems. (arXiv:0912.3481v1 [math.OC])
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.