We obtain fully computable constant free a posteriori error bounds on the broken energy seminorm and the discontinuous Galerkin (DG) norm of the error for nonuniform polynomial order symmetric interior penalty Galerkin, nonsymmetric interior penalty Galerkin and incomplete interior penalty Galerkin finite-element approximations of a linear second-order elliptic problem on meshes containing hanging nodes and comprised of triangular elements. The estimators are completely free of unknown constants and provide guaranteed numerical bounds on the broken energy seminorm and the DG norm of the error. These estimators are also shown to provide a lower bound for the broken energy seminorm and the DG norm of the error up to a constant and higher-order data oscillation terms.
miércoles, 28 de octubre de 2009
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.