In this article, we study the a posteriori H1 and L2 error estimates for Crouzeix-Raviart nonconforming finite volume element discretization of general second-order elliptic problems in [Ropf]2. The error estimators yield global upper and local lower bounds. Finally, numerical experiments are performed to illustrate the theoretical findings. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009
miércoles, 16 de septiembre de 2009
A posteriori error analysis of nonconforming finite volume elements for general second-order elliptic PDEs
In this article, we study the a posteriori H1 and L2 error estimates for Crouzeix-Raviart nonconforming finite volume element discretization of general second-order elliptic problems in [Ropf]2. The error estimators yield global upper and local lower bounds. Finally, numerical experiments are performed to illustrate the theoretical findings. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2009
Suscribirse a:
Enviar comentarios (Atom)
No hay comentarios:
Publicar un comentario
Nota: solo los miembros de este blog pueden publicar comentarios.